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Abstract

An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) mode-

ling is considered for developing stabilized finite element formulations for the stochastic advection and the incompress-

ible stochastic Navier–Stokes equations. The stabilized formulations are numerically implemented using the spectral

stochastic formulation of the finite element method (SSFEM). Generalized polynomial chaos and Karhunen–Loève

expansion techniques are used for representation of uncertain quantities. The proposed stabilized method is then

applied to various standard advection–diffusion and fluid-flow examples with uncertainty in essential boundary condi-

tions. Comparisons are drawn between the numerical solutions and Monte-Carlo/analytical solutions wherever

possible.
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1. Introduction

In the past decade, there has been a considerable interest in solving realistic problems of transport and fluid
flow. A majority of these problems can be modeled with the advection–diffusion and the incompressible Na-

vier–Stokes equations. Numerical solution of these equations presents difficulties in the presence of boundary
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or internal layers where sharp gradients can occur in the solution due to high Péclet numbers and/or Reynolds

numbers. Further errors are introduced due to phase, amplitude errors and pollution of the solution due to

excess diffusion. A majority of the devoted research effort in this area has been directed towards solution of

these problems under the assumption of ideal input (precise inlet boundary conditions, initial conditions,

material properties and computational domain). In practice, this is hardly the case and the input is always pol-
luted with uncertainties. This necessitates stochastic approaches for modeling fluid flow and transport.

In this context, the perturbationmethod and themethod ofmoments have been successfully applied to ana-

lyze flow in porous media, contaminant transport and problems related to groundwater transport [1–3]. Sen-

sitivity derivatives have also been used for investigating free-convection [4], the k-e turbulence model and

supersonic flow [5–7]. However, these methods are limited to small fluctuations and do not provide detailed

information about higher order statistics of the solution. Further, the perturbationmethod can become intrac-

table for moments of order greater than two. TheMonte-Carlo method can be applied but is computationally

expensive and can become unrealistic even for simple flow problems. A more effective approach based on the
spectral representation of uncertainty was introduced byGhanem and Spanos [8] wherein the stochastic solu-

tion is represented as a sum of projections on an appropriate Hilbert space of random variables. Such a rep-

resentation was shown to converge to the exact stochastic solution in theL2 sense [9] and hence, in probability

distribution. This approach known popularly as the spectral stochastic approach has been successfully used to

investigate stochastic transport and fluid-flow problems using finite-differences [10–12] and flow in random

media [13]. The spectral stochastic approach in conjunction with the spectral FEM has been applied to

flow-structure interactions and stochastic advection [14–16]. However, all these techniques do not fall under

the category of Galerkin finite elements that require stabilization.
Stabilized finite elements for fluid-flow and transport have grown in popularity over the last two decades

starting from the initial techniques like SUPG, Galerkin least squares (GLS), the SUPG-PSPG method [17–

20] up to the more recent residual free bubbles, subgrid scale models and the variational multiscale frame-

work [21–25]. In this context, it is also worth mentioning the multiscale finite element method developed in

[26–28]. The variational multiscale method has been used for large eddy simulation of turbulent flows [29–

31]. It provides a mathematically rigorous framework for stabilization of convection dominant flows. It

unifies the concepts of residual free bubbles, subgrid scale models and Green�s functions and encompasses

other stabilization techniques like SUPG, SUPG-PSPG and GLS. The purpose of this paper is to integrate
the variational multiscale method in a spectral stochastic approach to derive stabilized FEM formulations

for the stochastic advection–diffusion and incompressible stochastic Navier–Stokes equations.

The paper is organized as follows. We begin in Section 2 with a brief introduction to the spectral stoch-

astic framework. In Sections 3 and 4, the definitions of scalar stochastic advection–diffusion and incom-

pressible stochastic Navier–Stokes equations are considered, respectively. The variational multiscale

framework for deriving a stabilized framework for the solution of the above equations is also presented.

Following this, Section 5 presents some details of the finite element implementation of the spectral stoch-

astic framework. Several numerical examples are considered in Section 6 to validate the accuracy, conver-
gence and efficiency of the proposed scheme in the context of steady and transient advection–diffusion

problems and standard benchmark fluid-flow examples. Finally, in Section 7, the paper concludes with a

brief summary of inferences and suggestions for future investigation.
2. Stochastic framework and spectral approach

2.1. Probability space and spectral representations

Let ðX;F;PÞ be a probability space, where X is the space of basic outcomes,F is the minimal r-algebra
of the subsets of X and P is the probability measure on F. The r-algebra F can be viewed as a collection
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of all possible events that can be derived from the basic outcomes in X and have a well defined probability

with respect to P. The notation x will be used to refer to the basic outcomes in the sample space, i.e., x2X
[32].

In this framework, a real-valued random variable X is defined as a function that maps the probability

space to the real line or a subset of the real line. In short X : ðX;F;PÞ7!R. The expected value of X, when
it exists, is denoted as
EX ¼
Z
X

X ðxÞdPðxÞ ¼
Z
R

xdF ðxÞ; ð1Þ
where F(x) is the probability distribution measure for X defined on the real line R or a part of it [33]. Fur-

ther, a part of the real line denoted as B can be mapped back to the sample space via X�1ðBÞ and the fol-
lowing probability relation holds:
F ðBÞ ¼ PðX�1ðBÞÞ: ð2Þ

We will assume in all of our work that F(x) is continuous (or with finite discontinuities) with respect to the

Lebesgue measure. This justifies the usage of probability density/mass functions for stochastic quantities

and it is a reasonable assumption for most continuum quantities of interest (such as velocity, temperature,

pressure and other).

The space of all second-order random variables is denoted by L2ðX;F;PÞ and is defined as the Hilbert

space formed by random variables X(x) equipped with the mean-square norm
kX ðxÞkL2ðXÞ ¼ ðE j X ðxÞj2Þ1=2 < 1: ð3Þ
For notational convenience, we shall refer to L2ðX;F;PÞ as L2(X) with the understanding that

L2(X) = {X(x):EjX(x)j2 < 1}. It can also be shown that L2(X) is complete [33]. Thus, any random variable

X(x)2L2(X) can be expressed as a summation
X ðxÞ ¼
X1
i¼0

X ifiðxÞ; ð4Þ
where f ¼ ffiðxÞg10 form a basis of L2ðXÞ and fX ig10 denote the projections of X(x) onto the basis f. We

can also extend Eq. (4) to include space-time stochastic processes with finite second moment at each point

in space and time
wðx; t;xÞ ¼
X1
i¼0

wiðx; tÞfiðxÞ: ð5Þ
2.2. Finite dimensional subspaces of L2(X) and spectral approximation of stochastic quantities

Eq. (4) involves an infinite summation and hence is computationally intractable. Therefore, we consider

finite-dimensional subspaces of L2(X) that best represent the uncertainty in X(x). Such subspaces can be

defined by an appropriate choice of basis. The most popular methods for choosing the basis are as follows:

Karhunen–Loève expansion (KLE): The KLE for a stochastic process W(x,t,x) is based on the spectral

decomposition of its covariance function Rhh(y1,y2). Here, y1 and y2 denote the spatio-temporal coordinates

(x1,t1) and (x2,t2), respectively. By definition, the covariance function is symmetric and positive definite and
has real positive eigenvalues. Further, all its eigenfunctions are orthogonal and span the space to which

W(x,t,x) belongs. The expansion can be written as
W ðx; t;xÞ ¼ EW ðx; tÞ þ
X1
i¼0

ffiffiffiffi
ki

p
/iðx; tÞniðxÞ; ð6Þ
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where EW(x,t) denotes the mean of the process and fniðxÞg10 forms a set of uncorrelated random variables

whose distribution has to be determined [32]. Also fniðxÞg10 span L2(X). f/iðx; tÞg
1
0 and fkig10 form the

eigenpairs of the covariance function, i.e.
Z
ðD�TÞ

Rhhðy1; y2Þ/iðy2Þdy2 ¼ ki/iðy1Þ; ð7Þ
where D and T denote the spatial and temporal domains, respectively. The chief characteristic of the

KLE is that the spatio-temporal randomness has been decomposed into a set of deterministic functions
multiplying random variables. These deterministic functions can also be thought of as representing the

scales of fluctuations of the process. The KLE is mean-square convergent to the original process

W(x,t,x) provided the process has finite variance. The expansion in Eq. (6) is typically truncated to

a finite number of summation terms. The closer a process is to white noise, the more the number of

terms needed for approximation, on the other hand a random variable requires just one term in the

KLE. The main disadvantage of this technique is that it requires knowledge of the covariance function.

This is typically not available especially for the solution of a coupled system of stochastic partial differ-

ential equations. Thus, we consider the generalized polynomial chaos expansion approach that is dis-
cussed next.

Generalized polynomial chaos expansion (GPCE): The original Wiener polynomial chaos employs Her-

mite polynomials in multi-dimensional Gaussian random variables as the trial basis for L2(X) [34]. Cam-

eron and Martin [9] proved that such a choice of basis leads to an expansion that is convergent in

mean-square sense to the original process. The Wiener-polynomial chaos expansion for a second-order ran-

dom variable can be written as follows:
X ðxÞ ¼ a0X 0 þ
Xn

i1¼1

ai1H 1ðni1ðxÞÞ þ � � � þ
Xn

i1¼1

� � �
Xin�1

in¼1

ai1i2;...;inHnðni1ðxÞ; . . . ; ninðxÞÞ þ � � � ð8Þ
where Hn(ni1(x),. . .,nin(x)) denote Hermite polynomials of order (n) in independent identically distributed

Gaussian random variables n = (n1,. . .,nn) [8,34]. The general expression for the Hermite polynomials is gi-

ven as
Hnðni1ðxÞ; . . . ; ninðxÞÞ ¼ exp
1

2
nTn

� �
ð�1Þn o

n

oni1 . . . onin

exp � 1

2
nTn

� �
; ð9Þ
where i1 + i2 + � � � + in = n.

For notational convenience, we rewrite Eq. (8) as
X ðxÞ ¼
X1
j¼0

âjwjðnÞ: ð10Þ
There is a one-to-one correspondence between Hn(n) and wj(n). The set of polynomials fwjðnÞg
1
0 form a

complete orthogonal basis spanning L2(X). The orthogonality relation can be expressed as
E½wiðnÞwjðnÞ� ¼ E½wiðnÞ
2�dij; ð11Þ
where dij is the Kronecker delta operator, and the expectation operator is defined along the same lines as in

Eq. (1). It should be noted here that since n is a vector of n-uncorrelated Gaussian random variables, the

probability density measure dF(n) can be written as
dF ðnÞ ¼ ð2pÞ�n=2
exp �1

2
nTn

� �
dn: ð12Þ
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The original Wiener-polynomial chaos has been successfully used in solving several stochastic PDEs with

Gaussian inputs and some stochastic PDEs with allied non-Gaussian inputs (e.g. log-Normal) [8,10–13].

However, in general for non-Gaussian inputs, the optimal exponential convergence rate will not be realized.

Karniadakis and coworkers [15] found that the rate of convergence severely deteriorates in some cases.

Thus, in this work, we choose the basis from the broad Askey scheme of orthogonal polynomials. This
helps in selecting optimal bases for a wide variety of non-Gaussian inputs. The generalized polynomial

chaos expansion for X(x) can be written as follows [14]:
Table

Ortho

Rando

Gauss

Unifor

Beta

Gamm
X ðxÞ ¼ a0I0 þ
Xn

i1¼1

ai1 I1ðfi1ðxÞÞ þ � � � þ
Xn

i1¼1

� � �
Xin�1

in¼1

ai1i2...in Inðfi1ðxÞ; . . . ; finðxÞÞ þ � � � ð13Þ
where In(fi1(x),. . .,fin(x)) denotes the Wiener–Askey polynomial chaos of order n in terms of the uncorre-

lated random vector f = (f1(x),. . .,fn(x)). Again, for notational convenience we write
X ðxÞ ¼
X1
j¼0

âjwjðfÞ; ð14Þ
where wj(f) here has a one-to-one relationship with an Askey polynomial In(fi1,. . .,fin).
It can be shown by generalizing the Cameron and Martin theorem that this expansion converges to any

second-order random variable in the L2 sense [9]. Table 1 provides classes of Askey polynomials that have

the same weighting function as certain kind of distributions [35].
3. The stochastic advection–diffusion problem

Let D � Rd , where d P 1 is the number of space dimensions, be an open, bounded, polyhedral domain

with piecewise smooth boundary C;T ¼ ft : t 2 ½0; T �g and ðX;F;PÞ be a probability space. T is identi-

fied as the time interval for simulation.

The transient advection and diffusion of a stochastic scalar process in the presence of a divergence-free

stochastic velocity field a(x,x) in a medium with random non-negative diffusion coefficient m(x) can be de-

fined as follows.

Find /ðx; t;xÞ : ðD�T� XÞ7!R such that:
ot/þL/ ¼ f ; ðx; t;xÞ 2 ðD�T� XÞ; ð15Þ

/ðx; t;xÞ ¼ gðx; t;xÞ; ðx; t;xÞ 2 ðC�T� XÞ; ð16Þ

/ðx; 0;xÞ ¼ /0ðx;xÞ; ðx;xÞ 2 ðD� XÞ; ð17Þ

where L/ðx; t;xÞ is the stochastic advective–diffusive operator defined as
L/ðx; t;xÞ ¼ a � r/�r � ðmr/Þ: ð18Þ
1

gonal polynomials from Askey series with associated random variables [35]

m variable Askey chaos Support space

ian Hermite-polynomials (�1,1)

m Legendre-polynomials [�1,1]

Jacobi-polynomials [a,b]

a Laguerre-polynomials [0,1)
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f ðx; t;xÞ : ðD�T� XÞ7!R is a source term and gðx; t;xÞ : ðC�T� XÞ7!R is the specified stochastic

Dirichlet boundary condition.

It should be emphasized here that the probability model used for the advection velocity a(x,x) should
ensure the divergence-free constraint $ Æ a = 0 and the probability model used for the diffusion coefficient

m(x) should have a non-negative support space.
Since Gaussian distribution assigns finite probability to negative values, the diffusion coefficient cannot

be modeled as a Gaussian random variable. This startling result has been proved for the case of diffusion

problems [36] wherein, it was shown that a Gaussian thermal conductivity assumption leads to an ill-posed

polynomial chaos system of equations when implemented using the spectral stochastic finite element

method.

The argument x shall henceforth be dropped if it is clear by the content that the quantities are

random.
3.1. Variational formulation

Let U denote the trial solution space and V denote the weighting function space. U and V are defined

as follows:
U ¼ fu : uðx; t;xÞ 2 H 1ðDÞ � L2ðTÞ � L2ðXÞ; u ¼ g on Cg; ð19Þ

V ¼ fv : vðx;xÞ 2 H 1ðDÞ � L2ðXÞ; v ¼ 0 on Cg; ð20Þ

where L2(X) denotes the space of second order random variables, L2ðTÞ denotes the space of square inte-

grable functions defined on the time interval T and H 1ðDÞ is the Sobolev space of square-integrable func-
tions with square-integrable derivatives defined on the spatial domain D.

The variational counterpart of the strong system of Eqs. (15)–(17) reads as follows.

Find / 2 U such that 8w 2 V and 8t 2 T
ðot/;wÞ þ bð/;wÞ ¼ ðf ;wÞ: ð21Þ

The bilinear form b(/,w) introduced above is given by
bð/;wÞ ¼ ðL/;wÞ ¼ ð/;L�wÞ ¼ ða � r/;wÞ þ ðmr/;rwÞv; ð22Þ
where the inner-product (g,h)v is defined as
ðg; hÞv ¼
Z
D

E½gðx; t;xÞ � hðx; t;xÞ�dx ¼
Z
D

Z
X
gðx; t;xÞ � hðx; t;xÞ dP dx ð23Þ
and the inner-product (g,h) for a given t 2 T is defined as
ðg; hÞ ¼
Z
D

E½gðx; t;xÞhðx; t;xÞ�dx ¼
Z
D

Z
X

gðx; t;xÞhðx; t;xÞ dP dx: ð24Þ
It should be noted that the first two equalities in Eq. (22) require stronger regularity conditions (differen-

tiability) on the solution /(x,t,x). The assumption that g(x,t,x) and h(x,t,x) are second order random proc-

esses together with the Schwarz inequality
E½gðx; t;xÞhðx; t;xÞ�6 ðE j gðx; t;xÞj2Þ1=2ðE j hðx; t;xÞj2Þ1=2 < 1 ð25Þ

guarantee that the inner-product in Eq. (24) is finite.
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3.2. Variational multiscale method

Let / ¼ �/þ /0 be an overlapping sum decomposition of the exact solution /(x,t,x), where �/ represents

the contribution due to resolved large scales and / 0 is the contribution due to unresolved small scales. The

small scales will henceforth be referred to as subgrid scales [21,22,24,25]. Similar decomposition is consid-
ered for the weighting function w ¼ �w þ w0.

Let U ¼ �U�U0 and V ¼ �V�V0, where �U and U0 represent the large and subgrid scale function

spaces for the solution and let �V and V0 represent the large and subgrid scales for the weighting function.

We further assume
�/ ¼ g 8�/ 2 �U; x 2 C; ð26Þ

/0 ¼ 0 8/0 2 U0; x 2 C; ð27Þ

�w ¼ 0 8�w 2 �V; x 2 C; ð28Þ

w0 ¼ 0 8w0 2 V0; x 2 C: ð29Þ

The objective of the variational multiscale (VMS) method is to derive a variational statement for �/ that

takes into account an approximate model for the subgrid scale solution / 0.

Typically, the large scale trial solution and weighting function spaces are associated with finite element

spaces and hence are finite-dimensional. In contrast, the subgrid scale function spaces do not possess scal-

ing information and are infinite-dimensional.
Using the multiscale framework developed above, Eq. (21) can be split into two-scale problems as

follows:
ðot
�/þ ot/

0; �wÞ þ bð�/; �wÞ þ bð/0; �wÞ ¼ ðf ; �wÞ; ð30Þ

ðot
�/þ ot/

0;w0Þ þ bð�/;w0Þ þ bð/0;w0Þ ¼ ðf ;w0Þ: ð31Þ
The main idea here is to use Eq. (31) to arrive at approximate model for / 0(x,t,x). This approximate model

is then used to eliminate / 0 from Eq. (30).

Until now, Eqs. (30) and (31) are exact, highly coupled and hence extremely tough to solve. Thus, several

stages of modeling assumptions are introduced to simplify the subgrid scale Eq. (31).

Assumption 1. The subgrid scales are quasi-static, i.e., ot/ 0 � 0. The validity of this assumption is discussed

in [37–39]. This assumption requires that the time integration be accurate enough so that the large scale can

capture the temporal variation of the solution. In problems involving high Reynolds number flows, one

needs to explicitly track the subscales [40–42]. Since this preliminary effort is to integrate the variational

multiscale method with the stochastic finite element method and to study the effects of stochastic modeling
on the stabilization parameters, only quasistatic subgrid scales are investigated herein.

Eq. (31) can now be simplified as
bð/0;w0Þ ¼ ðf � ot
�/;w0Þ � bð�/;w0Þ: ð32Þ
The above equation together with strong regularity conditions for / (see Eq. (22)) yields the following sub-

grid scale equation.
For /0 2 U0, the following is satisfied for all w0 2 V0
ðL/0;w0Þ ¼ ðR�/;w0Þ; ð33Þ

where R�/ðx; t;xÞ ¼ f � ot

�/�L�/ is the large scale residual.
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Consider a finite element partition into elements indexed as E ¼ f1; . . . ;Nelg, dividing the spatial do-

main D into subdomains DðeÞ with element boundaries C(e). The strong form of Eq. (33) is then approxi-

mated over each element (e) as follows:
L/0 ¼ R�/; ðx; t;xÞ 2 ðDðeÞ �T� XÞ; ð34Þ

/0 ¼ 0; ðx; t;xÞ 2 ðCðeÞ �T� XÞ: ð35Þ

The assumption that the subgrid scale solution vanishes at element boundaries is a strong assumption and is
intimately linked with the idea of residual-free bubble functions [23,43]. For computational simplicity, it is

desirable to derive an approximate algebraic model for the subgrid scale solution. This leads to the second

modeling assumption.

Assumption 2. The algebraic subgrid scale model is considered to be of the form
/0ðx; t;xÞ � sðx;xÞR�/ðx; t;xÞ; ð36Þ

where the parameter s(x,x) is inherently stochastic and is interpreted as the intrinsic time scale for the

stochastic subgrid solution.

With substitution of Eq. (36) into Eq. (30), the complete multiscale stabilized variational statement for
the stochastic advection–diffusion problem can be written as
ðot
�/þ a � r�/; �w þ sðx;xÞ½a � r�w þ mðxÞD�w�Þ þ ðmðxÞr�/;r�wÞv

� ðmðxÞD�/; sðx;xÞ½a � r�w þ mðxÞD�w�Þ
¼ ðf ; �w þ sðx;xÞ½a � r�w þ mðxÞD�w�Þ; ð37Þ
where D denotes the Laplacian operator $2. Typically for linear finite elements most of the terms in the

above stabilized formulation drop out leading to a SUPG like formulation for stochastic advection–diffu-

sion equation.

We shall now proceed to derive models for the intrinsic subgrid time scale. For simplicity, in the ensuing

derivation it will be assumed that the advection velocity is constant in an element. The results however are

general and can be used for velocity and diffusion coefficient varying within an element.
3.3. Models for s-intrinsic subgrid time scale

Models for the intrinsic subgrid time scale are not unique. Different models can be suggested based on

the level of subgrid characterization desired, phase lag and transient behavior restrictions. All these mod-

els, however, should essentially possess similar behavior in the limits of pure advection and pure

diffusion.

Several techniques such as Green�s function methods, Fourier analysis, Taylor series expansion can be

employed to arrive at different models for s. In this work however, we follow the Fourier analysis approach.

This helps keep the derivation of s consistent for the stochastic advection–diffusion and stochastic Navier–
Stokes problems.

We begin by introducing the Fourier transform of a generic stochastic function g(x,x) defined on an ele-

ment (e)
ĝðk;xÞ :¼
Z
DðeÞ

exp �i
k � x

h

� �
gðx;xÞ dx; ð38Þ
where h is an elemental length parameter, k denotes the wave number and x denotes association with the

probability space.
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In the definition of variational multiscale framework, we interpreted the exact solution as an overlapping

sum of a resolved large scale component and an unresolvable subgrid scale component. Thus in the wave

number space, the large scale soluton corresponds to the lower wave number modes and the subgrid scale

solution corresponds to the larger wave number modes. This allows us to arrive at an approximation for the

spatial derivative of the generic stochastic function g(x,x)
ôg
oxj

ðk;xÞ ¼
Z
CðeÞ

nj exp �i
k � x

h

� �
gðx;xÞ dCþ i

kj

h
ĝðk;xÞ � i

kj

h
ĝðk;xÞ; ð39Þ
where nj is the jth component of the outward unit normal to the element (e). The Fourier transform of the

subgrid scale Eq. (34) now yields
/̂0ðk; t;xÞ � ŝðk;xÞR̂�/ðk; t;xÞ; ŝðk;xÞ :¼ mðxÞ j kj
2

h2
þ i

k � a
h

 !�1

: ð40Þ
Note that in the above expression the assumption of velocity being constant within an element is required.

Using Plancheral�s formula and the mean value theorem, we arrive at [38]
sðxÞ � c1ðxÞ
mðxÞ
h2

� �2

þ c2ðxÞ
j a j
h

� �2
" #�1=2

; ð41Þ
where jaj = ja(x)j is defined as
j a j¼j aðxÞ j¼
ffiffiffiffiffiffiffiffiffi
a � a

p
: ð42Þ
This choice of the intrinsic time scale makes sðxÞR�/ equal to the subgrid solution / 0 in the L2

sense.

Furthermore, the asymptotic behavior of s in the diffusive limit is dominated by the term h2/m(x) and the

asymptotic behavior in the advection limit is dominated by the term h/jaj. The intimate link between Eq.

(41) and SUPG-like stabilization methods is seen by choosing the random constants as c1(x) = 4 and

c2(x) = 2. This leads to an intrinsic subgrid time scale model of the form
sðxÞ � 4
mðxÞ
h2

� �2

þ 2
j a j
h

� �2
" #�1=2

: ð43Þ
In this work, however, we chose a model having similar asymptotic properties as the model in Eq. (43).
The proposed model minimizes phase lag in transient problems and extends to the more general case of

spatially varying stochastic velocity field and random diffusion coefficient. It is given as
sðx;xÞ ¼ h
2 jaðx;xÞ j f ðPeðx;xÞÞ; ð44Þ
where h is the elemental length and the function f(Pe) is defined for linear finite elements as
f ðPeÞ ¼ Pe

3
I½Pe:0<Pe6 3�ðPeÞ þ I½Pe:Pe>3�ðPeÞ; ð45Þ
where IAðxÞ is the indicator function for set {A} and Pe is the element Pèclet number
Peðx;xÞ ¼ j aðx;xÞ j h
2mðxÞ : ð46Þ



Remark 1. s(x,x) represents the intrinsic time scale for a real process via the subgrid solution. Hence the

model chosen for s should ensure that the subgrid scale solution has finite statistical moments (mean and

variance). However, the statistical behavior of s depends on the kind of probability models chosen for the

advection velocity and diffusion coefficient.

Given a model for s(x,x), the above conditions constrain the probability models available for a(x,x) and
m(x). Typically, spurious oscillations are noticed in the numerical solution when probability models with

unbounded support space are specified for the advection velocity and diffusion coefficient. The models that

fall under this category are normal, gamma and lognormal distribution models. Most probability models

with finite support space are usually compatible with the proposed intrinsic time scale model. These include

beta and uniform probability models.

We shall now elaborate on the remark using a simple one-dimensional advection–diffusion case study.
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3.4. Intrinsic time scale models and induced constraints – a one-dimensional case study

Consider the one-dimensional version of the stochastic convection-diffusion problem defined by Eqs.

(15)–(17) with the spatial domainD ¼ ½0; L�. The norm of the advection velocity then simply is jaj, the abso-
lute value of a(x,x). We do not use boldface for the advection velocity since it has a single component. The

intrinsic subgrid time scale s for this problem is as defined in Eq. (44). We now consider different proba-

bility models for advection velocity and diffusion coefficient and analyze the behavior of the subgrid scale
solution.
3.4.1. Case I: Pure advection, no source term

In this case, the expression for s simplifies to
sðx;xÞ ¼ h
2 jaðx;xÞ j ð47Þ
and the subgrid scale solution can be written as
/0ðx; t;xÞ ¼ � h
2 jaðx;xÞ j ot

�/þ a
o�/
ox

� �
: ð48Þ
Since, / 0 represents the subgrid scale for a physical quantity, the statistical moments for / 0 upto second

order should be finite [since /0 2 H 1ðDÞ � L2ðTÞ � L2ðXÞ].
Expanding �/ in a truncated generalized polynomial chaos expansion, we obtain the following:
/0ðx; t;xÞ ¼ �
XP

i¼0

h
2 jaðx;xÞ j ot

�/iwiðxÞ þ a
o�/iwiðxÞ

ox

� �
; ð49Þ
where the polynomials fwiðxÞg
P
i¼0 belong to the Askey series of orthogonal polynomials and form an

orthogonal basis of L2(X).
If we consider the advection velocity to be a normal random variable with N(l,r) distribution, the mean

of / 0 can be written as
E/0 ¼ �
Z 1

�1

XP

i¼0

h
2 jlþ rn j ot

�/iwiðnÞ þ a
o�/iwiðnÞ

ox

� �
1ffiffiffiffiffiffi
2p

p exp � 1

2
n2

� �
dn: ð50Þ
Note that, in the above equations, x dependence is shown via n and that all polynomial chaoses are func-

tions of n (here Hermite polynomials).
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In order for the above integral to converge, it can be shown that the following term needs to be finite

(note that the coefficients of polynomial chaos �/0;
�/1; . . . are deterministic):
Z 1

�1

h
2 j lþ rn j ot

�/0 þ l
o�/0

ox

� �
1ffiffiffiffiffiffi
2p

p exp � 1

2
n2

� �
dn: ð51Þ
However, the behavior of the above integral is governed by the divergent integral
Z 1

�1

1

2 j lþ rn j
1ffiffiffiffiffiffi
2p

p exp � 1

2
n2

� �
dn: ð52Þ
Hence, a normal distribution is not an appropriate model for the advection velocity under the proposed

choice of s. However, if a uniform distribution model is chosen for a with
a ¼ cþ dfðxÞ; f¼d U ½�1; 1�; c; d > 0; d < c; ð53Þ
then it can be shown that the first two statistical moments of / 0 are finite. The exact expressions are very

complicated and hence are not supplied here. However, the counterpart of Eq. (51) can be written as
Z cþd

c�d

h
2 j a j ot

�/0 þ l
o�/0

ox

� �
1

2d
da: ð54Þ
This integral converges and has the value
ot
�/0 þ l

o�/0

ox

� �
flogðcþ dÞ � logðc� dÞg 1

2d
: ð55Þ
Most probability distributions with finite support behave in a similar manner under the proposed
assumption of s. This case study is not to discourage the use of probability distributions with infinite sup-

port. The study is to point to the fact that caution has to be exerted to ensure that the model for s and the

input uncertainty models are compatible.
3.4.2. Case II: Diffusion dominant regime, no source term

In this case, the expression for s simplifies to
sðxÞ ¼ h2

4mðxÞ : ð56Þ
Analysis of the behavior of / 0 for this case proceeds along similar lines as in the previous case. In this

case, even distributions with infinite support like Gamma, v2 and shifted log-normal ensure / 02L2(X).
However, one should be careful in selecting distributions with infinite support. Choosing m(x) to be of

the form jX(x)j where X ðxÞ¼d Nðl; rÞ, leads to problems very similar to the previous case. This is because
jX(x)j attributes non vanishing probability for values near zero. Since m(x)�1 is unbounded near m = 0, the

expectation diverges. This leads to an important observation summarized below.

Remark 2. The selection of distributions for advection velocity and diffusion coefficient is constrained

upon the definition of the intrinsic time scale. There is a great scope for defining appropriate models for s
that are consistent with the probability models for a and m.
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4. The stochastic incompressible Navier–Stokes equations

LetD � Rd , where d P 1 is the number of space dimensions, be an open, bounded domain with piecewise

smooth boundaryC;T ¼ ft : t 2 ½0; T �g be the time interval of analysis and ðX;F;PÞ be a probability space.
The strong form of stochastic Navier–Stokes problem consists of finding the stochastic velocity v(x,t,x)

and pressure p(x,t,x) such that
otv þ v � rv � mðxÞDv þrp ¼ f ðx; t;xÞ; ðx; t;xÞ 2 ðD�T� XÞ; ð57Þ

r � v ¼ 0; ðx; t;xÞ 2 ðD�T� XÞ; ð58Þ

v ¼ vgðx; t;xÞ; ðx; t;xÞ 2 ðC�T� XÞ; ð59Þ

vðx; 0;xÞ ¼ v0ðx;xÞ; ðx;xÞ 2 ðD� XÞ; ð60Þ

where D denotes the Laplacian operator $2, m(x) is the random kinematic viscosity and f(x,t,x) is a stoch-

astic forcing term. The uncertainty in this problem comes from m(x), f(x,t,x), initial and boundary condi-

tions. In this work, we consider constant property flows, hence the kinematic viscosity is considered to be a
random variable with a non-negative support space (regions of strictly positive probability density).

4.1. Variational formulation

Let U and V, the trial solution and weighting function spaces for velocity and let X and X0 denote the

trial and weighting function spaces for pressure:
U ¼ fv : vðx; t;xÞ 2 ½H 1ðDÞ � L2ðTÞ � L2ðXÞ�d; v ¼ vg on Cg; ð61Þ

V ¼ fw : wðx;xÞ 2 ½H 1ðDÞ � L2ðXÞ�d; w ¼ 0 on Cg; ð62Þ

X ¼ fp : pðx; t;xÞ 2 L2ðDÞ � L1ðTÞ � L2ðXÞg; ð63Þ

X0 ¼ fq : qðx;xÞ 2 L2ðDÞ � L2ðXÞg; ð64Þ

where L1ðTÞ denotes functions of bounded variation in time. It should be noted here that the function spaces

used for velocity and pressure do not have the same regularity conditions (velocity should be twice differen-
tiable whereas pressure need only be once differentiable), hence the weighting function spaces also differ.

The variational formulation counterpart for the strong system of Eqs. (57) and (58) reads as follows.

Find ðv; pÞ 2 ðU;XÞ such that 8ðw; qÞ 2 ðV;X0Þ, the following is satisfied 8t 2 T
ðotv;wÞ þ ðmðxÞrv;rwÞv þ ðv � rv;wÞ � ðp;r � wÞ ¼ ðf ;wÞ; ð65Þ

ðq;r � wÞ ¼ 0; ð66Þ
where the inner-product (g,h) is here defined as
ðg; hÞ :¼
Z
D

E½g � h� dx ð67Þ
and the inner-product (g,h)v is defined as
ðg; hÞv :¼
Z
D

E½g : h� dx: ð68Þ
It is assumed that the initial condition is satisfied in a weak sense.
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4.2. Variational multiscale hypothesis

Consider an overlapping sum decomposition for velocity and pressure v ¼ �v þ v0 and p ¼ �p þ p0. Con-

sider similar decomposition for the weighting functions w ¼ �w þ w0 and q ¼ �q þ q0. This induces a multi-

scale decomposition for the function spaces of the form U ¼ �U�U0; V ¼ �V�V0;
X ¼ �X�X0 and X0 ¼ �X0 �X0

0, where the bar indicates reference to large resolved scales and the dash

indicates reference to the subgrid scales.

Unlike the stochastic advection–diffusion equation, the presence of a nolinear convection term necessi-

tates an apriori assumption in the derivation of a multiscale stabilized formulation.

Assumption 3. Assuming the large scales are sufficiently resolved, the subgrid scale solution can be

considered to be small compared to the resolved large scale solution. This justifies a one step Picard�s
linearization for the nonlinear advection term
v � rv � �v � rv0 þ �v � r�v: ð69Þ
This assumption is valid for low to moderate Reynolds numbers.

At high Reynolds numbers, adequate grid resolution is computationally highly demanding. Hence often

the large scales are only partially resolved. As a consequence, the kinetic energy held in subgrid scales be-

comes substantial (>20% of energy in the system). Further, the nonlinear subgrid convection term v 0Æ$v 0

assumes importance. Thus, a coupled subgrid scale and resolved scale equation has to be solved at each

time step. Hence such high Reynolds number flows are not addressed in this preliminary work.

The variational form given by Eqs. (65) and (66) now reads as follows:
ðot�v þ otv0; �wÞ þ ðmr�v þ mrv0;r�wÞv þ ð�v � r�v þ �v � rv0; �wÞ � ð�p þ p0;r � �wÞ ¼ ðf ; �wÞ; ð70Þ

ðr � �v þr � v0; �qÞ ¼ 0; ð71Þ

ðot�v þ otv0;w0Þ þ ðmr�v þ mrv0;rw0Þv þ ð�v � r�v þ �v � rv0;w0Þ � ð�p þ p0;r � w0Þ ¼ ðf ;w0Þ; ð72Þ

ðr � �v þr � v0; q0Þ ¼ 0: ð73Þ
Assumption 4. Consider subgrid scale velocity and pressure to be quasistatic random processes otv
0 � 0

and otp
0 � 0 [37,38]. If the time scales of subgrid solutions are different from those of the large scale

solutions as in the case of turbulent flows, this assumption is not valid. We would then need to explicitly

track the subscale evolution in time. By assuming linearity of subscales, we tacitly assume that the time

scales of subgrid solution and large scale are nearly the same and that we capture the complete time

evolution of the solution through ot�v. Further, the following relations hold under assumption of stronger

regularity conditions on velocity and pressure (twice differentiability).

The subgrid scale variational form given by Eqs. (72) and (73) yield the following strong system of sub-

grid scale equations:
�v � rv0 � mDv0 þ rp0 ¼ Rmð�v; �pÞ; ð74Þ

r � v0 ¼ Rcð�vÞ; ð75Þ

where D denotes the Laplacian operator and Rmð�v; �pÞ and Rcð�vÞ are the momentum and continuity equa-

tion residuals for the large resolved scales given as follows:
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Rmð�v; �pÞ ¼ f � ot�v � �v � r�v þ mD�v �r�p; ð76Þ

Rcð�vÞ ¼ �r � �v: ð77Þ

Note that the pressure does not directly affect the residual of the continuity equation. Without loss

of generality it can be assumed that the large scale momentum residual is divergence free. As in the

case of stochastic advection–diffusion equation, the behavior of subgrid scale solutions will be ne-

glected on element boundaries. Further, it will be assumed for the time scale calculations that the

velocity field within an element is constant. This assumption is to simplify the derivation and can

be relaxed.
Now, considering the Fourier transform of the subgrid scale Eqs. (74) and (75), we obtain:
m
j kj2

h2
þ i

�v � k
h

 !
v̂0ðk; t;xÞ þ i

k

h
p̂0ðk; t;xÞ ¼ R̂m; ð78Þ

i
k

h
� v̂0ðk; t;xÞ ¼ R̂c: ð79Þ
Noting that the large scale residual is divergence-free and taking inner product of Eq. (78) with i(k/h) (the

divergence operator in wave-number space), results in the following:
m
j kj2

h2
þ i

�v � k
h

 !
R̂c �

j kj2

h2
�̂pðk; t;xÞ ¼ 0: ð80Þ
Using an approach similar to the stochastic advection–diffusion equation and by using Plancheral�s for-
mula and mean value theorem, we arrive at the subgrid scale models:
v0ðx; t;xÞ � sðmÞðx;xÞRmð�v; �pÞ; ð81Þ

p0ðx; t;xÞ � sðcÞðx;xÞRcð�vÞ; ð82Þ
where s(m) and s(c) are defined as follows:
sðmÞðx;xÞ ¼ c1ðxÞ
mðxÞ
h2

� �2

þ c2ðxÞ
j �v j
h

� �2
" #�1=2

; ð83Þ

sðcÞðx;xÞ ¼ mðxÞ2 þ c2ðxÞ j �v j h
c1ðxÞ

� �2
" #1=2

; ð84Þ
where c1(x) and c2(x) are in general random constants and h is a mesh parameter. The uncertainty in Eqs.

(83) and (84) comes from the randomness in large scale velocity �v, the random kinematic viscosity m(x) and
the random constants c1(x) and c2(x). Again, caution needs to be exerted when using probability models

with unbounded support space for modeling input uncertainty. In particular, all numerical studies were

conducted in this report with c1 = 4 and c2 = 2. Furthermore the following relations hold via integration

by parts:
ð�v � rv0; �wÞ ¼ �ðv0;�v � r�wÞ; ð85Þ

ðmrv0;r�wÞv ¼ �ðv0; mD�wÞ: ð86Þ



108 V. Asokan Badri narayanan, N. Zabaras / Journal of Computational Physics 202 (2005) 94–133
Note that the second relation requires a twice differentiable velocity field and thus is an imposed strong reg-

ularity condition. Using the above relations and the subgrid scale models for velocity and pressure, we can

simplify the large scale Eqs. (70) and (71) as follows:
ðot�v; �w þ sðmÞf�v � r�w þ mD�wgÞ þ ðr�p; sðmÞf�v � r�w þ mD�wgÞ þ ð�v � r�v; �w þ sðmÞf�v � r�w þ mD�wgÞ
þ ðmr�v;r�wÞv � ð�p;r � �wÞ þ ðr � �v; sðcÞr � �wÞ � ðmD�v; sðmÞf�v � r�w þ mD�wgÞ

¼ ðf ; �w þ sðmÞf�v � r�w þ mD�wgÞ; ð87Þ

ðr � �v; �qÞ þ ðot�v; sðmÞr�qÞ þ ð�v � r�v; sðmÞr�qÞ � ðmD�v; sðmÞr�qÞ þ ðr�p; sðmÞr�qÞ ¼ ðf ; sðmÞr�qÞ: ð88Þ
5. Finite element implementation

5.1. Implementation of the stochastic advection–diffusion problem

Consider the set of elements resulting from the finite element discretization of the computational domain

D as the set E ¼ fDðeÞg; e ¼ 1; . . . ;Nel. We associate the large scale function spaces for the solution with

finite element interpolation spaces Uh and the trial function space with the space of stochastic Galerkin

weighting functions Vh. Since the trial functions have to be stochastic we consider a new finite element ba-

sis formed as a tensor product of Galerkin shape functions over space and the generalized polynomial chaos

basis for discretization over the probability space. This new basis is addressed as the stochastic Galerkin

basis. Thus a weighting function wh 2 Vh has the functional form
whðx;xÞ ¼ NðxÞwðxÞ; ð89Þ

where N(x) denotes the deterministic finite element shape function and w(x) denotes a member of the gen-
eralized polynomial chaos basis. Further, considering only linear finite elements for spatial discretization,

the variational form given in Eq. (37) can be simplified as
Z
D

Z
X

�wh o�/
h

ot
þ a � r�/

h

 !
dP dxþ

Z
D

Z
X
mðxÞr�/

h � r�wh dP dx

þ A
Nel

e¼1

Z
DðeÞ

Z
X

o�/
h

ot
þ a � r�/

h

 !
sðx;xÞa � r�wh dP dx

¼
Z
D

Z
X
�whf dP dxþ A

Nel

e¼1

Z
DðeÞ

Z
X
sðx;xÞa � r�whf dP dx: ð90Þ
The solution �/
h
can be expressed in terms of a truncated generalized polynomial chaos expansion

GPCE as
�/
hðx; t;xÞ ¼

XP

s¼0

�/
h
s ðx; tÞwsðxÞ; ð91Þ
where fwsðxÞg
P
0 is the truncated generalized polyomial chaos basis. Further, the coefficients in above expan-

sion lend themselves to a finite element representation in each element
�/
h
s ðx; tÞ ¼

Xnbf
b¼1

�/sbðtÞN bðxÞ; ð92Þ
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where Nb(x) are the standard Galerkin shape functions. This interpretation immediately helps identify the

finite element interpolation of the following form:
�/
hðx; t;xÞ ¼

XP

s¼0

Xnbf
b¼1

�/
h
sbðtÞN bðxÞwsðxÞ: ð93Þ
This expression is also consistent with the tensor product finite element basis representation given in Eq.

(89).

The spatial and probability space discretization of Eq. (90) yields the following set of ordinary differen-

tial equations
½MþMd�f _�/g þ ½KþNþNd�f�/g ¼ fF g; ð94Þ

where f�/g if the vector of nodal values of �/

h
. The nodal unknowns correspond to the terms in polynomial

chaos expansion of �/. Further, f _�/g denotes the time derivative of �/. The individual matrices are defined as

follows with:
wh
mðx;xÞ ¼ N aðxÞwrðxÞ; m ¼ ða� 1ÞðP þ 1Þ þ r; ð95Þ

wh
nðx;xÞ ¼ NbðxÞwsðxÞ; n ¼ ðb� 1ÞðP þ 1Þ þ s; ð96Þ

½MþMd�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

wh
nðwh

m þ sðx;xÞa � rwh
mÞ dP dx; ð97Þ

½KþNþNd�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

mðxÞrwh
n � rwh

m þ a � rwh
nðwh

m þ sðx;xÞa � rwh
mÞ

� �
dP dx; ð98Þ

fF gm ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

f ðwh
m þ sðx;xÞa � rwh

mÞ dP dx: ð99Þ
In the equations above, m and n denote the indices of a tensor-product finite element basis function (see

Eqs. (95) and (96)), where a,b = 1,. . .,nbf, r = 0,. . .,P. Thus the indices m, n refer to the combination of

the spatial and random bases given as m,n = 0,. . .,(nbf · (P + 1)�1).
The time integration is performed using the predictor–multicorrector algorithm that uses a one step gen-

eralized trapezoidal rule.

5.2. Implementation of the stochastic Navier–Stokes equations

Consider a finite element discretization similar to the stochastic advection–diffusion problem. The large

scale velocity and pressure spaces are associated with the finite element spaces Uh and Xh, respectively. The

large scale trial function spaces are associated with the space of stochastic Galerkin functions Vh and Xh
0.

The variational form given in Eqs. (87) and (88) can be simplified for linear finite elements as follows:
Z
D

Z
X

o�vh

ot
þ �vh � r�vh

� �
� �wh dP dxþ

Z
D

Z
X
mðxÞr�wh : r�vh dP dx

þ A
Nel

e¼1

Z
DðeÞ

Z
X

o�vh

ot
þ �vh � r�vh

� �
� sðmÞ�vh � r�wh dP dx�

Z
D

Z
X

�phr � �wh dP dx

þ A
Nel

e¼1

Z
DðeÞ

Z
X
sðmÞr�ph � ð�vh � r�whÞ dP dxþ A

Nel

e¼1

Z
DðeÞ

Z
X
sðcÞr � �whr � �vh dP dx

¼
Z
D

Z
X

f � �wh dP dxþ A
Nel

e¼1

Z
DðeÞ

Z
X
sðmÞf � ð�vh � r�whÞ dP dx; ð100Þ
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Z
D

Z
X
r � �vh�qh dP dxþ A

Nel

e¼1

Z
DðeÞ

Z
X

o�vh

ot
þ �vh � r�vh

� �
� ðsðmÞr�qhÞ dP dx

þ A
Nel

e¼1

Z
DðeÞ

Z
X
r�ph � ðsðmÞr�qhÞ dP dx

¼ A
Nel

e¼1

Z
DðeÞ

Z
X

f � ðsðmÞr�qhÞ dP dx: ð101Þ
By considering similar finite element expression as in Eq. (93), we obtain after spatial discretization, the

following nonlinear system of ordinary differential equations:
½MþMd�f _�vg þ ½KþNð�vÞ þNdð�vÞ þ C�f�vg � ½GþGd�f�pg ¼ fF g þ fF dg; ð102Þ

½GT�f�vg þ ½Me�f _�vg þ ½Neð�vÞ�f�vg þ ½Ge�f�pg ¼ fF eg; ð103Þ
where the individual matrices are defined as follows:
½MþMd�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X
ðwh

m þ sðmÞðx;xÞ�vh � rwh
mÞwh

ndij dP dx; ð104Þ

½K�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

mðxÞwh
m;kw

h
n;kdij þ mðxÞwh

m;jw
h
n;i

� �
dP dx; ð105Þ

½NþNd�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X
ðwh

m þ sðmÞðx;xÞ�vh � rwh
mÞ�vh � rwh

ndij dP dx; ð106Þ

½C�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X
sðcÞðx;xÞr � wh

mr � wh
n dP dx; ð107Þ

½GþGd�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

wh
m;iw

h
n � sðmÞðx;xÞ�vh � rwh

mwh
n;i

� �
dP dx; ð108Þ

fF þ F dgm ¼ A
Nel

e¼1

Z
DðeÞ

Z
X
ðwh

m þ sðmÞðx;xÞ�vh � rwh
mÞf dP dx; ð109Þ

½GT�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

wh
mwh

n;j dP dx; ð110Þ

½Me�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

wh
nsðmÞðx;xÞwh

m;j dP dx; ð111Þ

½Ne�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X

�vh � rwh
nsðmÞðx;xÞwh

m;j dP dx; ð112Þ

½Ge�mn ¼ A
Nel

e¼1

Z
DðeÞ

Z
X
sðmÞðx;xÞwh

m;kw
h
n;k dP dx; ð113Þ

fF egm ¼ A
Nel

e¼1

Z
DðeÞ

Z
X
sðmÞðx;xÞwh

m;jf dP dx: ð114Þ
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The time integration is performed using the predictor–multicorrector algorithm that uses a one step gen-

eralized trapezoidal rule.

Remark 3. As of now, no explicit numerical convergence theorems have been proved for stochastic PDEs

with the variational multiscale method. However, we conjecture that since the proposed subgrid models

yield a stabilization FE scheme similar to Galerkin least squares GLS [44], the convergence in spatial sense

will be similar to that of the GLS method. The convergence in stochastic sense is governed by the Cameron

and Martin theorem [9] for stochastic processes represented in an infinite generalized polynomial chaos

expansion. However, further detailed investigation is required for truncated generalized polynomial chaos

representations. The authors feel that the combination of GLS convergence analysis and the Cameron–
Martin theorem can yield convergence results for the proposed approach. Further research is needed in this

regard.
5.2.1. Solution of the linear system of equations

In this work, we use the parallel preconditioned GMRES algorithm proposed by Tezduyar et al. [45–47]

for the solution of linear equations resulting from the finite element discretization. The parameters needed

by the algorithm include the dimension of the Krylov basis, the tolerance for termination of the Arnoldi

iterations, the number of GMRES outer iteration restarts and the type of the preconditioner.

The parallel GMRES solver used in this work employs two different preconditioners, in particular, a ba-

sis diagonal preconditioner and a more complicated Crouts preconditioner that uses incomplete LU factor-

ization. It was found by numerical experiments that for all problems in this work, a Krylov basis of
dimension 30 and number of restarts equal to 15 resulted in convergence to a value less than 1e � 09. Ex-

cept for the flow past a circular cylinder problem all other examples used the diagonal preconditioner.

The matrix–vector operations and the vector–vector operations were performed using an efficient cluster

dependent implementation of BLAS I and BLAS II. Further discussion of the programming logic is beyond

the breadth of this report and hence is not resorted to.
6. Numerical examples

In the subsequent numerical examples, we consider uncertainty in boundary conditions and advection

velocity for stochastic advection–diffusion problems and uncertainty in inlet velocity for stochastic incom-

pressible fluid-flow problems. For all the uncertain input, an uniform probability distribution model is

used, since the uniform model represents the most basic non-informative prior model for an uncertain input

(typically used when someone knows only the maximum and minimum values).

6.1. Steady advection skew to a mesh

The problem statement is depicted in Fig. 1. The flow is taken to be unidirectional, skew to the mesh.

The advection velocity is modeled as a two-dimensional random variable. The randomness in velocity

translates as the randomness in the angle of skew a = tan�1(a2/a1), where a1 and a2 are the x and y com-

ponents of the velocity, respectively. The inflow boundary conditions are discontinuous as shown in Fig.

1. Homogenous natural boundary conditions are applied to the outflow boundary.

In the presence of negligible diffusion, the stochastic solution to this problem is essentially a pure advec-

tion of the discontinuous inflow boundary condition along flow characteristics. In particular, the solution
can be written in terms of the characteristic emanating from the point (�0.5,�0.25) as follows:
/ðx;xÞ ¼ /gðxÞI½x;x:hðx;xÞ6 0�ðx;xÞ; ð115Þ
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Fig. 1. Schematic of problem definition for steady advection skew to a mesh.
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where the function h(x,x) is defined as follows:
hðx;xÞ ¼ y þ 1
4

� �
a1ðxÞ � x þ 1

2

� �
a2ðxÞ ð116Þ
and I[A] is the indicator function for the set A
I½A�ðxÞ ¼
1; x 2 A;

0; otherwise:

�
ð117Þ
From Eq. (115) it is clear that the uncertainty in inflow boundary conditions and advection velocity affect

the uncertainty in solution.

Remark 4. In deterministic SUPG algorithms, the solution exhibits stability and good numerical
accuracy when the solution is regular. However, for non-regular solutions (e.g. solutions with

discontinuities) the SUPG estimates are not valid in the neighborhood of the discontinuity. Typically

spurious oscillations are observed in such locations. The proposed stabilized algorithm is a logical

extension of SUPG-like methods for the solution of stochastic advection–diffusion equation. Hence, the

behavior of the algorithm in the presence of discontinuities in solution is expected to mimic the behavior

of SUPG like methods in deterministic case. The significance of this argument will be clear after viewing

the cases below.
6.1.1. Case 1: No uncertainty in advection velocity, /g modeled as an uniform random variable

The advection velocity is taken to be a constant a = (1,1)T. This results in a 45� angle of skew. The stoch-
astic inflow boundary condition /g can be written as /g = 1 + dn, where d is a positive real number less than

one and n is a random variable uniformly distributed between �1 and 1.
In this case, the exact stochastic solution can be written as
/ðx;xÞ ¼ ð1þ dnÞI½x:hðxÞ6 0�ðxÞ; ð118Þ
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where h(x) is simplified as
-0

(a

Fig. 2.

mean a
hðxÞ ¼ y � x � 1
4
: ð119Þ
The solution obtained with a second order Legendre chaos expansion for the solution is shown in Fig. 2.

The model constant d was taken to be 0.1. Except in the regions in the neighborhood of the solution dis-

continuity, the numerical solution is exact (refer to Remark 2). As predicted by Eq. (118), all higher order

Legendre chaos coefficients in the expansion of /(x,x) (excluding the mean and the first order term) were

identically zero and hence are not plotted.

6.1.2. Case 2: No uncertainty in inflow boundary conditions, advection velocity modeled as a two-dimensional

uniform random variable

The inflow boundary condition is taken to be constant /g = 1. The advection velocity is modeled as a

two-dimensional uniform random variable a = (1 + dn1, 1 + dn2), where d is a positive real number, n1
and n2 are independent identically distributed (i.i.d) random variables uniformly distributed between �1

and 1.

We consider two subcases here, in the first case the diffusion coefficient is taken to be 0.001. The exact

stochastic solution does not exist here. In the second case, we take the diffusion coefficient to be negligible.

The exact solution to the second case can be written as
/ðx;xÞ ¼ I½x;x:hðx;xÞ6 0�ðx;xÞ; ð120Þ
where h(x,x) is
hðx;xÞ ¼ y þ 1
4

� �
ð1þ dn1Þ � x þ 1

2

� �
ð1þ dn2Þ: ð121Þ
At a given spatial location, Eq. (120) implies that /(x,x) is distributed as a Bernoulli random variable.
Thus, though the input uncertainty has a continuous distribution (uniformly distributed advection
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velocity), the output has a discrete probability distribution. Since in this stochastic version we have to cap-

ture distributions in both spatial solution and the probability distribution, the stochastic version is tougher

to solve than the corresponding deterministic advection skew to a mesh problem.

Subcase 1 – diffusion coefficient k = 0.001: Computational investigations were performed for various

mesh discretizations and orders of Legendre chaos approximation of the solution. Convergence was ob-
tained for fourth-order Legendre chaos approximation. The criterion for convergence used in the example

is as follows:
e ¼ k/ðpþ1Þ � /ðpÞk
k/ðpÞk

; ð122Þ
where, the iÆi is the L2ðXÞ � L2ðDÞ norm, /(p) and /(p + 1) are the solutions from successive orders of Leg-

endre chaos expansion of the solution. The converged error norm stabilized around 0.03 indicating a three

percent error.

The solutions at various y-values and the whole domain mean and standard deviation obtained using a

50 · 50 mesh are shown in Fig. 3. The value of d was taken to be 0.1. Excellent agreement is seen between

the Monte-Carlo solution obtained after 100,000 iterations and the order 4 polynomial chaos solution. The

whole domain solutions obtained for mean and standard deviation are shown in Fig. 4. Thus, for cases with
appreciable diffusion, the proposed technique performs well. We shall now proceed to test the algorithm in

the limit of pure advection. It is expected that the spurious oscillations in the vicinity of the sharp gradient

layer will pollute the mean solution leading to unwanted errors in the estimation of higher order statistics.

This however is a characteristic of all SUPG-like methods and has nothing to do with the order of Legendre

chaos approximation used.

Subcase 2 – diffusion coefficient k = 0: Computational investigations were performed for various mesh

discretizations and orders of Legendre chaos approximation of the solution. Convergence was obtained

for a fourth-order Legendre chaos approximation. The criteria for convergence used in the example is as
follows:
e ¼ k/ðpÞ � /exactk
k/exactk

; ð123Þ
where the iÆi is the L2ðXÞ � L2ðDÞ norm, /(p) is the solution from a pth-order Legendre chaos approxima-

tion of the solution. /exact is the exact solution. In this example, it was noticed that the error did not de-

cay below 23%. This is attributed to the spurious behavior of the algorithm in the vicinity of sharp
solution gradients. Further sophisticated subgrid modeling and introduction of discontinuous interpola-

tion functions in the finite element method may be required to avoid these problems. However, it defeats

the purpose of this work in establishing that simple models can be used to obtain fairly accurate results in

many important advection–diffusion and flow problems. The solutions at various y-values and the whole

domain mean and standard deviation obtained using a 50 · 50 mesh are shown in Fig. 5. The value of d
was taken to be 0.1. It can be observed that though the mean estimates are fairly accurate, the oscillations

in the vicinity of the sharp layers in solution pollute the standard deviation. The whole domain solution

for mean and standard deviation as obtained for a fourth-order Legendre chaos expansion of the output
is given in Fig. 6.
6.2. Transient advection of a cosine hill in rotating flow field

The transient advection of a cosine hill in a rotating flow field has been identified as a standard test prob-

lem for testing advection–diffusion algorithms [48]. The problem definition is depicted in Fig. 7. The flow

field comprises of rigid rotation about the origin (taken here to be the point (0,0)). Uncertainty here is
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considered in the speed of rotation c(x). Initial conditions, boundary conditions are considered to be deter-

ministic. We test the problem in the limit of pure advection (diffusion coefficient �10�9). The advection

velocity hence has circular characteristics centered at the origin (0,0). Further, the advection velocity at

any spatial location is given by
aðx; t;xÞ ¼ ða1ðx;xÞ; a2ðx;xÞÞ ¼ ðcðxÞy;�cðxÞxÞ: ð124Þ
The initial conditions for the problem were taken as follows:
/ðx; 0; tÞ ¼ I½r:r�0:2<0�ðrÞ cosð5pr=2Þ; ð125Þ
where r is defined as
r ¼ x � 1
4

� �2 þ y2
h i1=2

: ð126Þ
In the limit of pure advection, the initial conditions propagate along the circular streamlines. The tran-

sient solution can hence be written as follows:
/ðx; t;xÞ ¼ I½̂r:̂r�0:2<0�ðr̂Þ cosð5pr̂=2Þ; ð127Þ
where r̂ is defined as
r̂ ¼ ððx � x̂Þ2 þ ðy � ŷÞ2Þ1=2; x̂ ¼ 1
4
cosðctÞ; ŷ ¼ 1

4
sinðctÞ: ð128Þ
The principal investigations in this example include: (i) a comparison of the mean stochastic solution l/(x)
with the analytical mean; (ii) a comparison of the standard deviation of the stochastic solution r/(x) with
the analytical standard deviation; (iii) a discussion of numerical diffusion and phase lag.
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6.2.1. Computational details

A 50 · 50 mesh of uniform bilinear isoparametric quadrilateral elements is used for computation. The

speed of rotation c is modeled as a uniform random variable
cðxÞ ¼ 1þ dnðxÞ; n¼d unifð�1; 1Þ; ð129Þ

where d is a positive real constant less than one.

The simulation was carried up to non-dimensional time t = 9 with a time stepping of Dt = 0.0025. The

predictor–multicorrector algorithm was used for time integration. The model constant d was taken to be

0.1. This value corresponds to a 10% fluctuation in speed of rotation about the mean value.

Since the exact stochastic solution given by Eq. (127) is not amenable to further simplifications, it

is computed using 100,000 Monte-Carlo realizations (convergence was obtained around 60,000
iterations).

The phase errors, visible as spurious leading and lagging oscillations in solution are absent for all orders

of Legendre chaos approximation of the solution. The converged solution was obtained for a fourth-order

Legendre chaos approximation. The convergence criterion used here can be written as
e ¼ k/ðpÞ � /exactk
k/exactk

; ð130Þ
where, the iÆi is the L2ðXÞ � L2ðDÞ norm, /(p) is the solution from a pth-order Legendre chaos approxima-

tion of the solution. /exact is the exact solution as computed by MC iterations.

The peak error in a quantity q is defined as
e ¼ max q �max qexact

max qexact

: ð131Þ
The contour plots comparing the mean and standard deviation with the exact solution (obtained by

100,000 MC iterations) are shown in Fig. 8(a)–(f). It can be observed that though the mean solution is

almost exact for a second-order approximation, the standard deviation contours bear no resemblance
to the exact solution. However, for a fourth-order approximation, the mean and standard deviation

show excellent agreement with the exact solution. Further, the peak error in the mean and standard

deviation are found to be around 3.5% and 5%, respectively. This numerical diffusion is a character-

istic of any SUPG like method and is well within the limits of numerical diffusion seen in deterministic

problems.

The whole domain converged solution corresponding to fourth-order solution approximation is given in

Fig. 9.
6.3. Internal channel flow: Poiselle flow

This example is chosen for its simplicity and existence of an analytical stochastic solution for the velocity

field. It was examined earlier in [10] using a spectral projection method with the fractional step implemen-
tation of the Navier–Stokes equations. The solution is two-dimensional in the initial transition zone. Then

the solution is completely one-dimensional in the so-called fully-developed region.

The schematic with the problem definition and mesh details used here are given in Fig. 10. The compu-

tational mesh is comprised of 100 · 10 bilinear quadrilateral elements. The inlet velocity is axial with a mag-

nitude U that is uncertain. The inlet velocity U is modeled as a random variable with a uniform distribution

U[0.9,1.1]. The kinematic viscosity is considered to be deterministic and is given the value 0.025. The Poi-

selle flow problem is addressed here as a transient problem. The simulation was carried out until steady-

state was achieved at around t � 22.5 s with a time stepping of Dt = 0.002.
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Fig. 8. Pure advection of a cosine hill in a rotating flow field: comparison of mean and standard deviation for various orders of

Legendre chaos approximation of solution versus the exact solution (computed with 100,000 MC realizations).
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Fig. 9. Pure advection of a cosine hill in a rotating flow field: whole domain solutions for the (a) mean and (b) the standard deviation

obtained for a fourth-order Legendre chaos approximation of the solution.

Fig. 10. Schematic of the computational domain and mesh details for the Poiselle flow example.
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The flow Reynolds number is defined based on the channel width D as follows:
ReðxÞ ¼ UðxÞD
m

: ð132Þ
No uncertainty is considered in the initial or boundary conditions. The analytical solution for the veloc-

ity in the fully-developed region at steady-state can be written as
uðx; t;xÞ ¼ 4UDðxÞ
y
D

� �
1� y

D

� �h i
; vðx; t;xÞ ¼ 0; ð133Þ
where the maximum velocity at the center of the channel is given as UD = 1.5U(x).
The solution u(x,t,x) can be further simplified as follows:
uðx; t;xÞ ¼ u0 þ u1nðxÞ ¼ 4 1þ 0:1nðxÞð ÞUDðxÞ
y
D

� �
1� y

D

� �h i
: ð134Þ
The results for the mean axial velocity and its first coefficient in the Legendre-chaos expansion are shown

in Fig. 11(a) and (b). It can be seen that the mean velocity results are nearly exact.



Fig. 11. Poiselle flow: (a) mean axial velocity; (b) first term in LCE of axial velocity.

Fig. 12. Problem definition for the lid driven cavity example.
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6.4. Driven cavity flows – lid driven square cavity problem

Over the last two decades, much interest has been given to the investigation of the classical driven cavity

problem. Here, we consider the motion of an incompressible fluid within an impermeable square box. The
fluid motion is driven by the uniform motion of one of the sides of the box (lid here). This problem has

often provided a stiff test for fluid-flow solvers [49–52]. The presence of interesting phenomena like
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recirculation and existence of a center of low pressure makes this problem an ideal choice for uncertainty

analysis. The problem definition is depicted in Fig. 12. Uncertainty is considered in the lid velocity. Mate-

rial parameters like viscosity are taken to be constant and deterministic.

The chief flow characteristics investigated in the problem include: (i) the mean mid-plane pressure versus

the deterministic mid-plane pressure; (ii) the mean mid-plane velocity versus the deterministic mid-plane
velocity; (iii) the effect of uncertainty on mean flow streamlines at steady-state; (iv) an investigation of recir-

culation patterns at steady-state.

6.4.1. Computational details

The lid-driven cavity problem is addressed here as a transient problem. The computational domain com-

prises of 65 · 65 bilinear quadrilateral elements. The simulation was carried out until steady-state was
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Fig. 14. Lid driven cavity: steady-state contours for (a) the mean pressure, (b) the deterministic pressure, (c) the mean streamlines and

(d) the deterministic streamline pattern.
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achieved at around t � 20 s. The lid velocity is modeled as a random variable with a uniform distribution

U[0.9,1.1]. This amounts to uncertainty level in lid velocity of about 10% of the mean. The kinematic vis-

cosity is deterministic and taken as m = 0.0025. Since the uncertainty in lid velocity manifests as uncertainty

in Reynolds number, the stochastic simulation tries to capture the effects of a range of flow regimes around

a mean Reynolds number of 400 in one simulation.

6.4.2. Discussion of results

Since the lid velocity is modeled as a uniform random variable, Legendre-chaos (LCE) expansions were

used to represent the velocity and pressure solutions. For the level of uncertainty considered, the conver-

gence in mean and standard deviation were observed for second-order Legendre-chaos representation. The

comparison of mean mid-plane quantities with the deterministic simulation results are shown in Fig. 13.

The benchmark solution by Ghia et al. [49] have also been included in Fig. 13(c) and (e). It should be

emphasized that the mean flow Reynolds number (here 400) and the Reynolds number used for the deter-
ministic simulations should be the same. It can be observed that the mean stochastic solution is less than the

corresponding deterministic solution. This outcome has been attributed to the extra diffusion added due to

uncertainty effects [14–16]. Though there is no initial uncertainty in pressure solution, the first-order coef-

ficient in LCE expansion of the pressure is around 16% of the mean pressure. This indicates that the uncer-

tainty propagation in such systems is highly nonlinear and that uncertainty in any input quantity can

drastically affect the uncertainty in any other output quantity.

We now compare the mean pressure and mean streamline contours for the stochastic solution and deter-

ministic solution at steady-state. The contours are plotted in Fig. 14. It can be noted that the small recir-
culation zone at the bottom left of the lid is not captured by the stochastic simulation. Further, the

maximum values of the streamfunction are �0.1 for the stochastic solution and �0.112 for the deterministic

solution. Ghia et al. [49] provide �0.1139 as the maximum streamfunction value.

6.5. Flow past a circular cylinder – wake flow

This problem is the classical example of flow past bluff bodies. The alternate shedding of vortices in the

near wake leads to large pressure fluctuations that can cause structural vibrations and unacceptable noise
levels. Hence, the investigation of dynamics in the cylinder wake is an important problem from engineering

standpoint.
Fig. 15. Problem definition and computational domain for the flow past a circular cylinder example.



A schematic sketch of the problem domain is shown in Fig. 15. Based on the dimensions shown, the

Reynolds number is defined as follows Re = U0D/m, where U0 is the far field fluid velocity. The nature of

vortex dynamics in the cylinder wake is closely linked to the Reynolds number. Thus any uncertainty in

U0 has considerable effect on the flow pattern in the cylinder wake. The simulation is carried out with a

mean Reynolds number of E[Re] = 100. In this case, the flow is completely in the laminar vortex shedding
regime.

6.5.1. Computational details

The computational domain shown in Fig. 15 comprises of 2000 bilinear quadrilateral elements. The sim-

ulation was carried out for t = 180 s with a time stepping of 0.03 s. The inlet velocity is assumed to be a

uniform random variable with a probability distribution U[0.9,1.1]. The kinematic viscosity is deterministic
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given as m = 0.01. No uncertainty is considered in the initial conditions. The outflow boundary is assumed

to be traction-free.

It is interesting to note that the vortex shedding is initiated by the higher-order terms in the Legendre

chaos expansion of the solution (velocity and pressure). Fig. 16(a) and (b) shows that the first-order term

in LCE of pressure has already entered the periodic vortex shedding regime when the mean pressure just
starts exhibiting the transition to the vortex shedding regime. It is thus very important to ensure that

the higher order terms are calculated accurately. Typically, due to the relatively high uncertainty level con-

sidered (10% fluctuation about the mean value), the convergence of the solver for higher order terms is se-

verely tested. Typically the number of GMRES restarts were 7–10 times more than the number of restarts in

the steady solution regime. The dimension of Krylov subspace for GMRES iterations was doubled from 30

to 60 for the vortex-shedding regime. Further investigation of effective preconditioners for solution of sys-

tems arising from the method is warranted.
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Fig. 17. Flow past a circular cylinder: mean pressure contours at t = 144 s (a) stochastic simulation and (b) deterministic simulation.
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For the sake of comparing our results with those of a deterministic flow past a circular cylinder sim-

ulation we ran a deterministic simulation with Reynolds number 100 and with all other simulation

parameters (grid, time stepping) remaining the same. The results at t = 144 s are shown in Figs. 17–

19. The mean pressure contours at t = 144 s in Fig. 17(a) and (b) show interesting details. The stochastic

mean pressure is out of phase with the deterministic pressure. This can be noticed by the shedding pat-
tern in the wake region. Further, the near wake effects decay faster for the stochastic mean pressure.

This is observed by the decay of eddies nearer to the cylinder than in the case for deterministic simu-

lation. It can be observed that the streamline patterns for mean velocity components Fig. 18(a) and

(b) also show considerable difference. Also, the deterministic streamlines indicate a stronger circulation

in the near wake region than for the stochastic mean component. This can be argued by the nature of

the stochastic velocity behind the cylinder wake. Variation in Reynolds number typically causes a change

in the location of vortices behind the cylinder wake. Thus, averaging the velocities obtained over a range

of Reynolds numbers will cause the vortices to be smoothed out. The comparison of velocity compo-
nents for the deterministic simulation and the stochastic simulation are shown in Fig. 19(a) and (b).

Again differences can be observed in magnitude and phase in both velocity components. The velocity

spectrum calculated using FFT (Fig. 20) of mean velocity is considerably broad. This is in contrast with

the deterministic simulations where a sharp shedding frequency is obtained. The dominant frequency

however is nearly the same as the deterministic vortex shedding frequency. A value of 0.162 was ob-

tained for the Strouhal number based on mean velocity. This analysis of velocity spectrum is however

a guideline and does not explain the essential dynamics of the uncertainty propagation. It can be ob-

served that though the uncertainty in inlet velocity amounts to 10% fluctuation about the mean value,
the pressure fluctuation after the onset of vortex shedding is about 35% of the mean value (see Fig. 21(a)

and (b)). This stresses the need for maintaining accuracy of the higher-order LCE terms since they are

comparable to the mean solution and hence play an essential part in the governing dynamics of the

system.
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7. Conclusions

A stabilized finite element framework has been developed based on the variational multiscale method
with algebraic subgrid modeling for the solution of the linear stochastic scalar advection–diffusion equation

and the incompressible stochastic Navier–Stokes equations. Several numerical benchmark examples with

uncertainty in boundary conditions were considered to validate the formulation and to test the numerical

efficiency of the implementation.

A parallel finite element implementation using cluster specific implementation of BLAS I and BLAS II

and a preconditioned parallel GMRES solver with restart capability were developed for parallel solution of

the coupled stochastic partial differential equations. Though the computational effort involved with the

proposed method is an order of magnitude higher than that of a deterministic problem, it was still found
to be two orders of magnitude faster than the Monte-Carlo simulation for advection–diffusion problems.

The computational methodology, however, can be refined in the following areas:

	 The convergence rate of the GMRES solver in transient problems like flow past a circular cylinder (on

the onset of vortex shedding) went down drastically. New preconditioning strategies need to be devel-

oped to this end.
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	 The solution scheme still suffers from curse of dimensionality. If the input has a steeply decaying covar-

iance kernel, a higher dimensional Askey chaos polynomial representation is needed for the solution.

This places a computational constraint on available algorithms.

	 Though Askey chaos is well suited for a variety of probability distributions, if the input probability

model is derived from experimental data, Askey chaos may not be sufficient to ensure exponential con-
vergence in probability distribution. Some of our current research efforts are addressing these

limitations.

	 Finally, convergence results for the spectral stochastic finite element method and more specifically for the

presented stochastic variational multiscale method have not yet been established. This is an area of sig-

nificant importance to the future development and use of these techniques.
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